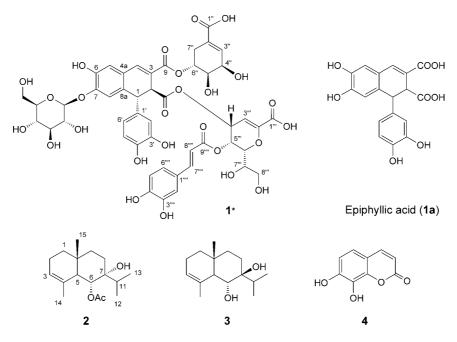
A New Lignan and two Eudesmanes from Lepidozia vitrea

by Bin Ma, Huai-Fang Guo, and Hong-Xiang Lou*

School of Pharmaceutical Sciences, Shandong University, Jinan 250012, P. R. China (phone: +86-531-88382019; fax: +86-531-88382019; e-mail: louhongxiang@sdu.edu.cn)

A new lignan, **1**, was isolated from *Lepidozia vitrea*, together with two known eudesmane terpenoids, **2** and **3**, as well as 7,8-dihydroxycoumarin (**4**). Their structures were elucidated on the basis of extensive 1D- and 2D-NMR as well as MS analyses.


Introduction. – *Lepidozia vitrea*, a liverwort belonging to the family of Lepidoziaceae, is a rich source of sesquiterpenoids [1]. Several sesquiterpenoids from the essential oil and ethyl ether extract of this plant have been reported [2]. In the course of our phytochemical investigations on antifungal constituents from liverworts [3], the new lignan derivative **1** was isolated from *L. vitrea*, together with three known compounds: 7a-hydroxyeudesm-3-en-6a-yl acetate (**2**), eudesm-3-ene-6a, 7β -diol (**3**), and 7,8-dihydroxycoumarin (=7,8-dihydroxy-1-benzopyran-2(2*H*)-one; **4**). Herein, we report the isolation, structure elucidation, and characterization of these compounds.

Results and Discussion. – Compound **1**, isolated from the EtOH extract of *L. vitrea*, was obtained as a colorless powder. Its molecular formula, $C_{48}H_{48}O_{26}$, was derived by ESI-MS (M^+ at m/z 1040.012; calc. 1040.243). Five subunits were identified. The first one was an aryl-substituted 1,2-dihydro-6,7-dihydroxynaphthalene-2,3-dicarboxylate moiety, showing 18 signals in the ¹³C-NMR spectrum (*Table*), including two carboxylic C-atoms (δ (C) 167.5, 170.5), 14 aromatic or olefinic resonances, and two aliphatic CH groups (δ (C) 46.2, 49.6).

We were able to identify the parent structure **1a**, which has been isolated before from *Pellia epiphylla* [4a], and named epiphyllic acid [4c]. The ¹H-NMR spectrum of the resonances belonging to its skeleton consisted of two coupled methine H-atoms [δ (H) 3.83 (d, J = 2.4 Hz, 1 H), 4.40 (br. s, 1 H)], three signals of a 3,4-dihydroxyphenyl group [δ (H) 6.35 (d, J = 7.8 Hz, 1 H), 6.36 (s, 1 H), 6.48 (d, J = 7.8 Hz, 1 H)], and three *singlets* at δ (H) 6.80, 7.04, and 7.54 (1 H each). These data were identical with those reported for epiphyllic acid proper.

One glucosyl (Glc) moiety was recognized, with an anomeric resonance at δ (C) 103.9 in the ¹³C-NMR spectrum, as well as five O-bearing aliphatic C-atoms at δ (C) 62.2, 70.2, 74.8, 77.5, and 77.9. The anomeric H-atom resonated at δ (H) 4.85 (*d*, J=7.2 Hz, 1 H), which indicated β -configuration. Also, the anomeric Glc H-atom showed a ³J correlation to C(7) of epiphyllic acid in the HMBC spectrum. Accordingly, the main skeleton of compound **1** consisted of a 7-*O*-glucosylated epiphyllic acid unit.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

* Arbitrary atom numbering and relative configuration

Further, a shikimic acid residue, a common subunit in lignans from liverworts [4b], was identified on the basis of a set of ¹H, ¹H-COSY cross-peaks (*Figure*), with signals at δ (H) 6.80 (H–C(3'')), 4.36 (H–C(4'')), 3.91 (H–C(5'')), and 5.18 (H–C(6'')), in combination with a CH₂ group at δ (H) 2.36/2.81 (CH₂(7''))¹).

An additional C_8 moiety in the ¹³C-NMR spectrum of **1** was derived from trilobatinoic acid C²). This moiety consists of five O-bearing aliphatic C-atoms [δ (C) 68.3, 63.3, 77.4, 71.1, and 63.9 for C(4^{'''})–C(8^{'''}), resp.], one C=C bond at δ (C) 147.7 (C(2^{'''}) and 107.5 C(3^{'''}), as well as a COOH group at δ (C) 165.8.

The last subunit was recognized as caffeic acid, with characteristic *doublets* at δ (H) 7.65 (H–C(7^{''''})) and 6.38 (H–C(8^{''''})), and a common coupling constant of 15.6 Hz, in agreement with an (*E*)-configured C=C bond. In addition, there were three aromatic resonances [δ (H) 7.10 (*s*, H–C(2^{''''})), 6.80 (*d*, *J*=8.4 Hz, H–C(5^{''''})), 6.98 (*d*, *J*=8.4 Hz, H–C(6^{''''}))] belonging to this moiety.

The observed HMBC correlations between H-C(5''') of trilobatinoic acid C and the carboxy C(9''') atom of caffeic acid, between H-C(4''') of trilobatinoic acid C and the carboxy C(10) atom, and between H-C(6'') of shikimic acid and the carboxy C(9) atom determined the linkages among these subunits.

The relative configuration of **1** was determined by means of NOESY experiments (*Figure*). As there were cross-peaks between H-C(8) and both H-C(1) and the

¹) Arbitrary atom numbering.

²) This name was first proposed by *Becker* and co-workers [4b], who had isolated four C_7/C_8 compounds from the liverwort *Bazzania trilobata* [4b].

2 3 4 4a 5 6	4.40 (s) 3.83 (d, J=2.4) 7.54 (s) 6.79-6.81 (m) 7.04 (s)	49.6 124.3 139.8 127.9 117.7 147.4 148.7	2, 5, 8a, 9, 10	Shikimic 1" 2" 3" 4" 5" 6"	acid moiety: 6.79-6.81 (m) 4.36 (s) 3.91 (dd, J=7.2, 3.6) 5.18-5.19 (m)		3", 7"
3 4 4a 5 6	7.54 (s) 6.79–6.81 (m)	124.3 139.8 127.9 117.7 147.4 148.7	2, 5, 8a, 9, 10	2" 3" 4" 5"	4.36 (<i>s</i>) 3.91 (<i>dd</i> , <i>J</i> =7.2, 3.6)	130.5 138.7 67.3 69.6	3", 7"
4 4a 5 6	6.79–6.81 (<i>m</i>)	139.8 127.9 117.7 147.4 148.7		3'' 4'' 5''	4.36 (<i>s</i>) 3.91 (<i>dd</i> , <i>J</i> =7.2, 3.6)	138.7 67.3 69.6	3", 7"
4a 5 6	6.79–6.81 (<i>m</i>)	127.9 117.7 147.4 148.7		4'' 5''	4.36 (<i>s</i>) 3.91 (<i>dd</i> , <i>J</i> =7.2, 3.6)	67.3 69.6	3", 7"
5 6		117.7 147.4 148.7	6, 7	5″	3.91 (dd, J = 7.2, 3.6)	69.6	3", 7"
6		147.4 148.7	6, 7	-			3", 7"
	7.04 (s)	148.7		6''	5.18 + 5.10 (m)		
-	7.04 (s)				J.10-J.19 (III)	72.1	2", 5", 9
7	7.04 (s)	110.2		7″	2.36 (d, J = 15.6),	28.9	6''
8		119.3	4a		2.81 (d, J = 15.6)		
8a		130.8		Trilobati	noic acid moiety:		
9		167.5		1'''		165.8	
10		172.9		2'''		147.7	
1'		135.8		3'''	5.70 (s)	107.5	1′′′′
2′	6.36(s)	115.6	3', 4', 6'	4′′′	5.70 (s)	68.3	3''', 10
3′		146.0		5'''	5.75 (s)	63.3	3''', 4''', 9''''
4′		145.0		6'''	4.16(d, J=8.4)	77.4	7''', 8'''
5'	6.48 (d, J = 7.8)	116.4	1', 3', 4', 6'	7′′′	3.46 - 3.49(m)	71.1	6''', 8'''
6′	6.35(d, J=7.8)	120.0	2', 4'	8'''	3.46 - 3.49(m),	63.9	6''', 7'''
Glucosyl moiety:			3.81 - 3.83 (m)				
-		103.9	7	Caffeic a	cid moiety:		
2	3.46-3.49 (<i>m</i>)	74.8		1''''	•	127.8	
	3.46 - 3.49(m)	77.5		2''''	7.10(s)	115.5	3'''', 4'''', 7''''
4	3.74 - 3.76(m)	70.2		3''''	. ,	149.7	
5	3.46 - 3.49(m)	77.9		4''''		146.7	
	3.70-3.72 (m)	62.2		5''''	6.80 (<i>m</i>)	117.7	
				6''''	6.98(d, J=8.4)	123.5	4''''
				7''''	7.65 (d, J = 15.6)	148.3	2"", 6"", 9"", 9
				8''''	6.38(d, J=15.6)	114.9	9''''
				9''''		168.5	

Table. ¹*H- and* ¹³*C-NMR Data of* **1**. At 600 and 150 MHz, resp., in CD₃OD; δ in ppm, *J* in Hz. Arbitrary atom numbering.

anomeric H-atom of Glc, H-C(1) had to be in an equatorial position. Furthermore, H-C(2) was determined to be in axial position, based on the cross-peak between H-C(1) and H-C(2). Similarly, there were cross-peaks between H-C(4'''), H-C(5'''), and H-C(6'''). So, H-C(4''') and H-C(6''') had to be in an axial positions, and H-C(5''') was in equatorial position [5].

From the above data, the structure of the new lignan **1** was elucidated as 'epiphyllic acid-7-O- β -glucoside-9,6"-O-shikimic acid ester-10,4""-O-(5"",9""-O-caffeic acid ester)-trilobatinoic acid ester', which corresponds to 2-(6-carboxy-3,4-dihydro-2-(1,2-dihydroxyethyl)-3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2H-pyran-4-yl) 3-(3-carboxy-5,6-dihydroxycyclohex-3-en-1-yl) 1,2-dihydro-1-(3,4-dihydroxyphenyl)-6-hydroxy-7-[(β -glucopyranosyl)oxy]naphthalene-2,3-dicarboxylate³).

³) Correct name based on ephiphyllic acid (1a) as parent structure. The fully systematic name of 1 would be 2,6-anhydro-4-O-{[3-{[(3-carboxy-5,6-dihydroxycyclohex-3-en-1-yl)oxy]carbonyl}-1,2-dihydro-1-(3,4-dihydroxyphenyl)-7-(β-glucopyranosyloxy)-6-hydroxynaphthalen-2-yl]carbonyl}-3-deoxy-5-O-[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oct-2-enonic acid.

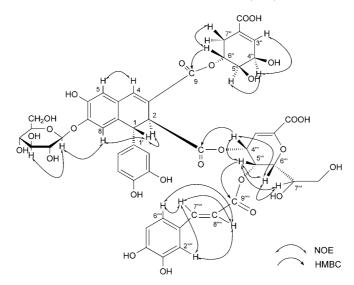


Figure. Key NOE and HMBC correlations in 1

A similar compound, 'epiphyllic acid-7-O- β -glucoside-9,1""-O-heptitol ester-10,5"'-O-shikimic acid ester', was isolated before from the liverwort *Lepicolea ochroleuca* [6]. There, heptitol, with its unbranched chain including seven O-bearing C-atoms, is linked to C(9) of epiphyllic instead of shikimic acid.

The known compounds 2-4 were also obtained from the EtOH extract of *L. vitrea*, and their structures were determined by comparison of their analytical data with those reported in the literature [2b][7]. Note that **4** was isolated from *L. vitrea* for the first time.

The authors express their gratitude to the *Natural Science Foundation of China (NSFC)* for supporting this project (Grant No.30271537).

Experimental Part

General. All solvents were of anal. grade. Column chromatography (CC) was performed on silica gel or Sephadex LH-20 (Pharmacia). Melting points (m.p.) were measured on an X-6 melting-point apparatus (Beijing TECH Instrument Co., Ltd). Optical rotations were determined on a Perkin-Elmer 241 MC polarimeter. NMR Spectra were recorded on a Bruker Avance-600 spectrometer at 600 (¹H) and 150 MHz (¹³C); chemical shifts δ in ppm rel. to Me₄Si or rel. to residual solvent peaks [δ (H) 3.30 and δ (C) 49.0 ppm for CD₃OD], coupling constants J in Hz. Mass spectra were recorded on an Apex FT-ICR apparatus (Bruker Daltonics, Inc.); in m/z.

Plant Material. The plant was collected in Shiwan Mountains, Guang Xi Chuang Municipality, P. R. China, and identified as *Lepidozia vitrea* by Prof. *Ruiliang Zhu*, Huadong Normal University, Shanghai. A voucher specimen was deposited at the School of Pharmaceutical Sciences, Shandong University, China.

Extraction and Isolation. Air-dried *L. vitrea* (1.1 kg) was sequentially extracted with Et_2O , EtOH, and H_2O . The EtOH extract was subjected to CC (SiO₂; CHCl₃/MeOH) to yield eleven fractions (Fr.). Further purification of *Fr. 5* by CC (*Sephadex LH-20*; CHCl₃/MeOH 1:1) afforded **2** (7.0 mg) and **3** (4.2 mg). *Fr. 6* was purified by CC (SiO₂; CHCl₃/MeOH) to yield **4** (11.5 mg). Further purification of *Fr. 7* by CC (*Sephadex LH-20*; MeOH) afforded **1** (11 mg).

2-(6-Carboxy-3,4-dihydro-2-(1,2-dihydroxyethyl)-3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-2H-pyran-4-yl) 3-(3-Carboxy-5,6-dihydroxycyclohex-3-en-1-yl) 1,2-Dihydro-1-(3,4-dihydroxyphenyl)-6-hydroxy-7-[(β -glucopyranosyl)oxy]naphthalene-2,3-dicarboxylate (1)³). Colorless powder. [α]_D²⁵ = -0.703 (c=0.8, MeOH). ¹H- and ¹³C-NMR: see the *Table*. ESI-MS: 1040.8, 902.6, 699.3, 391.5, 338.6. HR-ESI-MS: 1040.012 (M^+ , C₄₈H₄₈O₂₆; calc. 1040.243).

7*a*-Hydroxyeudesm-3-en-6*a*-yl Acetate (**2**) [2b]. Colorless needles. M.p. 141.0–142.0° (petroleum ether/acetone). ¹H-NMR (600 MHz, CDCl₃): 0.86 (*s*, Me(15)); 0.97 (2*d*, J=7.0 each, Me(12), Me(13)); 1.35, 1.48 (*m*, CH₂(1)); 1.24, 1.46 (*m*, CH₂(9)); 1.58, 1.78 (*m*, CH₂(8)); 1.62 (*s*, Me(14)); 1.99 (*m*, H–C(11)); 1.92, 2.10 (*m*, CH₂(2)); 2.44 (*t*, J=1.0, H–C(5)); 3.87 (*s*, H–C(6)); 5.47 (*s*, H–C(3)). ¹³C-NMR (150 MHz, CDCl₃): 15.9 (C(12)); 16.3 (C(13)); 17.9 (C(15)); 21.9 (C(14)); 22.9 (MeCO); 23.0 (C(8)); 23.2 (C(2)); 34.1 (C(11)); 34.2 (C(9)); 34.4 (C(12)); 38.0 (C(1)); 45.1 (C(5)); 73.9 (C(7)); 76.8 (C(6)); 124.6 (C(3)); 133.3 (C(4)); 170.5 (C=O).

Eudesm-3-ene-6a,7 β -*diol* (**3**) [2b]. Yellowish oil. ¹H-NMR (600 MHz, CD₃OD): 0.90, 0.93 (2*d*, *J* = 7.0 each, Me(12), Me(13)); 0.99 (*s*, Me(15)); 1.26, 1.36 (*m*, CH₂(1)); 1.29, 1.45 (*m*, CH₂(9)); 1.58, 1.78 (*m*, CH₂(8)); 1.99 (*m*, H–C(11)); 1.92, 2.10 (*m*, CH₂(2)); 2.44 (*t*, *J* = 1.0, H–C(5)); 3.87 (*s*, H–C(6)); 5.47 (*s*, H–C(3)). ¹³C-NMR (150 MHz, CD₃OD): 15.9 (C(12), C(13)); 18.1 (C(15)); 20.5 (C(14)); 22.9 (C(2)); 27.8 (C(8)); 31.5 (C(10)); 32.8 (C(11)); 35.3 (C(9)); 39.3 (C(1)); 45.3 (C(5)); 71.7 (C(6)); 74.8 (C(7)); 124.3 (C(3)); 132.7 (C(4)).

7,8-Dihydroxycoumarin (=7,8-Dihydroxy-1-benzopyran-2(2H)-one; **4**) [7]. Colorless needles. M.p. 250–252° (petroleum ether/acetone). ¹H-NMR (500 MHz, CD₃OD): 7.82 (d, J=9.5, H–C(4)); 6.99 (d, J=8.5, H–C(5)); 6.80 (d, J=8.5, H–C(6)); 6.17 (d, J=9.5, H–C(3)). ¹³C-NMR (125 MHz, CD₃OD): 163.4 (C(2)); 151.1 (C(7)); 146.7 (C(4)); 145.0 (C(9)); 133.5 (C(8)); 120.2 (C(5)); 113.9 (C(10)); 113.7 (C(6)), 112.2 (C(3)).

REFERENCES

- [1] Y. Asakawa. Phytochemistry 2004, 65, 623.
- [2] a) Y. F. Shu, H. C.Wei, C. L. Wu, *Phytochemistry* **1994**, *37*, 773; b) M. Toyota, E. Nakaishi, Y. Asakawa, *Phytochemistry* **1996**, *41*, 833.
- [3] G. Y. Li, B. Ma, H. X. Lou, Nat. Prod. Res. Dev. 2002, 14, 5; W. Zhang, H. X. Lou, G. Y. Li, H. M. Wu, J. Asian Nat. Prod. Res. 2003, 5, 189.
- [4] a) F. Cullmann, K-P. Adam, H. Becker, *Phytochemistry* 1993, 34, 831; b) J. M. Scher, J. Zapp, H. Becker, *Phytochemistry* 2003, 62, 769; c) F. Cullmann, A. Schmidt, F. Schuld, M. L. Trennheuser, H. Becker, *Phytochemistry* 1999, 52, 1647.
- [5] F. Cullmann, K-P. Adam, J. Zapp, H. Becker, Phytochemistry 1996, 41, 611.
- [6] F. Cullmann, H. Becker, Phytochemistry 1999, 52, 1651.
- [7] G. F. Liu, Y. Q. Fu, F. F. Hou, China J. Chin. Materia Med. 1995, 20, 738 [in Chinese].

Received August 30, 2006